Lecture Notes On Mathematical Olympiad Courses For Senior Section Volume 1 This book gives an extensive survey of many important topics in the theory of Hamilton—Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton—Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry—Mather theory, and weak Kolmogorov—Arnold—Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well. The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory. The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume of comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2009 to 2010. Mathematical Olympiad problems with solutions for the years 2002OCo2008 appear in an earlier volume, Mathematical Olympiad in China." The International Mathematical Olympiad (IMO) is a competition for high school students. China has taken part in the IMO 21 times since 1985 and has won the top ranking for countries 14 times, with a multitude of golds for individual students. The six students China has sent every year were selected from 20 to 30 students among approximately 130 students who took part in the annual China Mathematical Competition during the winter months. This volume comprises a collection of original problems with solutions that China used to train their Olympiad team in the years from 2006 to 2008. Mathematical Olympiad problems with solutions for the years 2002?2006 appear in an earlier volume, Mathematical Olympiad in China. In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they won the first place almost every year. The authors are coaches of China's IMO National Team, whose students have won many gold medals many times in IMO. This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book explains many basic techniques for proving inequalities such as direct comparison, method of magnifying and reducing, substitution method, construction method, and so on. Among the many beautiful and nontrivial theorems in geometry found in Geometry Revisited are the theorems of Ceva, Menelaus, Pappus, Desargues, Pascal, and Brianchon. A nice proof is given of Morley's remarkable theorem on angle trisectors. The transformational point of view is emphasized: reflections, rotations, translations, similarities, inversions, and affine and projective transformations. Many fascinating properties of circles, triangles, quadrilaterals, and conics are developed. In China, lots of excellent students who are good at maths take an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results -- they have won the first place almost every year. The author is one of the senior coaches of China's IMO National Team, whose students have won many gold medals many times in IMO. This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. This book will, in an interesting problem-solving way, explain what probability theory is: its concepts, methods and meanings; particularly, two important concepts -- probability and mathematical expectation (briefly expectation) -- are emphasized. It consists of 65 problems, appended by 107 exercises and their answers. Various elementary techniques for solving problems in algebra, geometry, and combinatorics are explored in this second edition of Mathematics as Problem Solving. Each new chapter builds on the previous one, allowing the reader to uncover new methods for using logic to solve problems. Topics are presented in self-contained chapters, with classical solutions as well as Soifer's own discoveries. With roughly 200 different problems, the reader is challenged to approach problems from different angles. Mathematics as Problem Solving is aimed at students from high school through undergraduate levels and beyond, educators, and the general reader interested in the methods of mathematical problem solving. Olympiad mathematics is not a collection of techniques of solving mathematical problems but a system for advancing mathematical education. This book is based on the lecture notes of the mathematical Olympiad training courses conducted by the author in Singapore. Its scope and depth not only covers and exceeds the usual syllabus, but introduces a variety concepts and methods in modern mathematics. In each lecture, the concepts, theories and methods are taken as the core. The examples are served to explain and enrich their intension and to indicate their applications. Besides, appropriate number of test questions is available for reader"s practice and testing purpose. Their detailed solutions are also conveniently provided. The examples are not very complicated so that readers can easily understand. There are many real competition questions included which students can use to verify their abilities. These test questions are from many countries, e.g. China, Russia, USA, Singapore, etc. In particular, the reader can find many questions from China, if he is interested in understanding mathematical Olympiad in China. This book serves as a useful textbook of mathematical Olympiad courses, or as a reference book for related teachers and researchers. Errata(s). Errata. Sample Chapter(s). Lecture 1: Operations on Rational Numbers (145k). Request Inspection Copy. Contents: .: Operations on Rational Numbers; Linear Equations of Single Variable; Multiplication Formulae; Absolute Value and Its Applications; Congruence of Triangles; Similarity of Triangles; Divisions of Polynomials; Solutions to Testing Questions; and other chapters. Readership: Mathematics students, school teachers, college lecturers, university professors; mathematics enthusiasts In China, lots of excellent students who are good at maths take an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results — they have won the first place almost every year. The author is one of the senior coaches of China's IMO National Team, whose students have won many gold medals many times in IMO. This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. This book will, in an interesting problem-solving way, explain what probability theory is: its concepts, methods and meanings; particularly, two important concepts — probability and mathematical expectation (briefly expectation) — are emphasized. It consists of 65 problems, appended by 107 exercises and their answers. The International Mathematical Olympiad (IMO) is an annual international mathematics competition held for pre-collegiate students. It is also the oldest of the international science olympiads, and competition for places is particularly fierce. This book is an amalgamation of the booklets originally produced to guide students intending to contend for placement on their country's IMO team. See also A First Step to Mathematical Olympiad Problems which was published in 2009. The material contained in this book provides an introduction to the main mathematical topics covered in the IMO, which are: Combinatorics, Geometry and Number Theory. In addition, there is a special emphasis on how to approach unseen questions in Mathematics, and model the writing of proofs. Full answers are given to all questions. Though A Second Step to Mathematical Olympiad Problems is written from the perspective of a mathematician, it is written in a way that makes it easily comprehensible to adolescents. This book is also a must-read for coaches and instructors of mathematical competitions. Vietnam has actively organized the National Competition in Mathematics and since 1962, the Vietnamese Mathematical Olympiad (VMO). On the global stage, Vietnam has also competed in the International Mathematical Olympiad (IMO) since 1974 and constantly emerged as one of the top ten. To inspire and further challenge readers, we have gathered in this book selected problems of the VMO from 1962 to 2008. A number of Selection Test problems are also included to aid in the formation and training of a national team for IMO. The book is highly useful for high school students and teachers, coaches and instructors preparing for mathematical olympiads, as well as non-experts simply interested in having the edge over their opponents in mathematical competitions. See also A SECOND STEP TO MATHEMATICAL OLYMPIAD PROBLEMS The International Mathematical Olympiad (IMO) is an annual international mathematics competition held for pre-collegiate students. It is also the oldest of the international science olympiads, and competition for places is particularly fierce. This book is an amalgamation of the first 8 of 15 booklets originally produced to guide students intending to contend for placement on their country's IMO team. The material contained in this book provides an introduction to the main mathematical topics covered in the IMO, which are: Combinatorics, Geometry and Number Theory. In addition, there is a special emphasis on how to approach unseen questions in Mathematics, and model the writing of proofs. Full answers are given to all questions. Though A First Step to Mathematical Olympiad Problems is written from the perspective of a mathematician, it is written in a way that makes it easily comprehensible to adolescents. This book is also a must-read for coaches and instructors of mathematical competitions. Number theory is an important research field of mathematics. In mathematical competitions, problems of elementary number theory occur frequently. These problems use little knowledge and have many variations. They are flexible and diverse. In this book, the author introduces some basic concepts and methods in elementary number theory via problems in mathematical competitions. Readers are encouraged to try to solve the problems by themselves before they read the given solutions of examples. Only in this way can they truly appreciate the tricks of problem-solving. The book contains blackline masters of stimulating activities in mathematics.._ This new volume of the Mathematical Olympiad Series focuses on the topic of geometry. Basic and advanced theorems commonly seen in Mathematical Olympiad are introduced and illustrated with plenty of examples. Special techniques in solving various types of geometrical problems are also introduced, while the authors elaborate extensively on how to acquire an insight and develop strategies in tackling difficult geometrical problems. This book is suitable for any reader with elementary geometrical knowledge at the lower secondary level. Each chapter includes sufficient scaffolding and is comprehensive enough for the purpose of self-study. Readers who complete the chapters on the basic theorems and techniques would acquire a good foundation in geometry and may attempt to solve many geometrical problems in various mathematical competitions. Meanwhile, experienced contestants in Mathematical Olympiad competitions will find a large collection of problems pitched at competitions at the international level, with opportunities to practise and sharpen their problem-solving skills in geometry. Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerou Classical Euclidean geometry, with all its triangles, circles, and inscribed angles, remains an excellent playground for high-school mathematics students, even if it looks outdated from the professional mathematician's viewpoint. It provides an excellent choice of elegant and natural problems that can be used in a course based on problem solving. The book contains more than 750 (mostly) easy but nontrivial problems in all areas of plane geometry and solutions for most of them, as well as additional problems for self-study (some with hints). Each chapter also provides concise reminders of basic notions used in the chapter, so the book is almost self-contained (although a good textbook and competent teacher are always recommended). More than 450 figures illustrate the problems and their solutions. The book can be used by motivated high-school students, as well as their teachers and parents. After solving the problems in the book the student will have mastered the main notions and methods of plane geometry and, hopefully, will have had fun in the process. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. What a joy! Shen's ``Geometry in Problems" is a gift to the school teaching world. Beautifully organized by content topic, Shen has collated a vast collection of fresh, innovative, and highly classroom-relevant questions, problems, and challenges sure to enliven the minds and clever thinking of all those studying Euclidean geometry for the first time. This book is a spectacular resource for educators and students alike. Users will not only sharpen their mathematical understanding of specific topics but will also sharpen their problem-solving wits and come to truly own the mathematics explored. Also, Math Circle leaders can draw much inspiration for session ideas from the material presented in this book. --James Tanton, Mathematician-at-Large, Mathematical Association of America We learn mathematics best by doing mathematics. The author of this book recognizes this principle. He invites the reader to participate in learning plane geometry through carefully chosen problems, with brief explanations leading to much activity. The problems in the book are sometimes deep and subtle: almost everyone can do some of them, and almost no one can do all. The reader comes away with a view of geometry refreshed by experience. --Mark Saul, Director of Competitions, Mathematical Association of America This volume aims to collect new ideas presented in the form of 4 page papers dedicated to mathematical and statistical methods in actuarial sciences and finance. The cooperation between mathematicians and statisticians working in insurance and finance is a very fruitful field and provides interesting scientific products in theoretical models and practical applications, as well as in scientific discussion of problems of national and international interest. This work reflects the results discussed at the biennial conference on Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF), born at the University of Salerno in 2004. In China, lots of excellent maths students takes an active part in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years, China's IMO Team has achieved outstanding results — they have won the first place almost every year. The author is one of the senior coaches of China's IMO National Team, he is the headmaster of Shanghai senior high school which is one of the best high schools of China. In the past decade, the students of this school have won the IMO gold medals almost every year. The author attempts to use some common characteristics of sequence and mathematical induction to fundamentally connect Math Olympiad problems to particular branches of mathematics. In doing so, the author hopes to reveal the beauty and joy involved with math exploration and at the same time, attempts to arouse readers' interest of learning math and invigorate their courage to challenge themselves with difficult problems. Introductory Statistics is designed for the one-semester, introduction to statistics course and is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it. The foundation of this textbook is Collaborative Statistics, by Barbara Illowsky and Susan Dean. Additional topics, examples, and ample opportunities for practice have been added to each chapter. The development choices for this textbook were made with the guidance of many faculty members who are deeply involved in teaching this course. These choices led to innovations in art, terminology, and practical applications, all with a goal of increasing relevance and accessibility for students. We strove to make the discipline meaningful, so that students can draw from it a working knowledge that will enrich their future studies and help them make sense of the world around them. Coverage and Scope Chapter 1 Sampling and Data Chapter 2 Descriptive Statistics Chapter 3 Probability Topics Chapter 4 Discrete Random Variables Chapter 5 Continuous Random Variables Chapter 6 The Normal Distribution Chapter 7 The Central Limit Theorem Chapter 8 Confidence Intervals Chapter 9 Hypothesis Testing with One Sample Chapter 10 Hypothesis Testing with Two Samples Chapter 11 The Chi-Square Distribution Chapter 12 Linear Regression and Correlation Chapter 13 F Distribution and One-Way ANOVA Olympiad mathematics is not a collection of techniques of solving mathematical problems but a system for advancing mathematical education. This book is based on the lecture notes of the mathematical Olympiad training courses conducted by the author in Singapore. Its scope and depth not only covers and exceeds the usual syllabus, but introduces a variety concepts and methods in modern mathematics. In each lecture, the concepts, theories and methods are taken as the core. The examples are served to explain and enrich their intension and to indicate their applications. Besides, appropriate number of test questions is available for reader's practice and testing purpose. Their detailed solutions are also conveniently provided. The examples are not very complicated so that readers can easily understand. There are many real competition questions included which students can use to verify their abilities. These test questions are from many countries, e.g. China, Russia, USA, Singapore, etc. In particular, the reader can find many questions from China, if he is interested in understanding mathematical Olympiad in China. This book serves as a useful textbook of mathematical Olympiad courses, or as a reference book for related teachers and researchers. This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio and projective transformations, and the theory of the complete quadrilateral. The exposition is friendly and relaxed, and accompanied by over 300 beautifully drawn figures. The emphasis of this book is placed squarely on the problems. Each chapter contains carefully chosen worked examples, which explain not only the solutions to the problems but also describe in close detail how one would invent the solution to begin with. The text contains a selection of 300 practice problems of varying difficulty from contests around the world, with extensive hints and selected solutions. This book is especially suitable for students preparing for national or international mathematical olympiads or for teachers looking for a text for an honor class. Olympiad mathematics is not a collection of techniques of solving mathematical problems but a system for advancing mathematical education. This book is based on the lecture notes of the mathematical Olympiad training courses conducted by the author in Singapore. Its scope and depth not only covers and beyond the usual syllabus, but introduces a variety of concepts and methods in modern mathematics as well. In each lecture, the concepts, theories and methods are taken as the core. The examples serve to explain and enrich their intentions and to indicate their applications. Besides, appropriate number of test questions is available for the readers' practice and testing purpose. Their detailed solutions are also conveniently provided. The examples are not very complicated so readers can easily understand. There are many real competition questions included which students can use to verify their abilities. These test questions originate from many countries all over the world. This book will serve as a useful textbook of mathematical Olympiad courses, a self-study lecture notes for students, or as a reference book for related teachers and researchers. Appealing to everyone from college-level majors to independent learners, The Art and Craft of Problem Solving, 3rd Edition introduces a problem-solving approach to mathematics, as opposed to the traditional exercises approach. The goal of The Art and Craft of Problem Solving is to develop strong problem solving skills, which it achieves by encouraging students to do math rather than just study it. Paul Zeitz draws upon his experience as a coach for the international mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems. Lecture Notes On Mathematical Olympiad Courses: For Senior Section - Volume 2World Scientific Publishing Company New mathematics often comes about by probing what is already known. Mathematicians will change the parameters in a familiar calculation or explore the essential ingredients of a classic proof. Almost magically, new ideas emerge from this process. This book examines elementary functions, such as those encountered in calculus courses, from this point of view of experimental mathematics. The focus is on exploring the connections between these functions and topics in number theory and combinatorics. There is also an emphasis throughout the book on how current mathematical software can be used to discover and prove interesting properties of these functions. The book provides a transition between elementary mathematics and more advanced topics, trying to make this transition as smooth as possible. Many topics occur in the book, but they are all part of a bigger picture of mathematics. By delving into a variety of them, the reader will develop this broad view. The large collection of problems is an essential part of the book. The problems vary from routine verifications of facts used in the text to the exploration of open questions. This book is intended as a teacher's manual and a self-study handbook for high-school or college students, and mathematical competitors. It consists mainly of problems created by the authors, with author-prepared-solutions, which were used in different national and international Mathematical Olympiads from 1984 to 2019. The book is arranged by topic and difficulty level. The book gives a broad view of mathematics and goes well beyond the elementary mathematics by providing deeper treatments of the following topics: Geometry and Trigonometry, Number theory, Algebra, Combinatorics and Calculus. An outrageous graphic novel that investigates key concepts in mathematics Integers and permutations—two of the most basic mathematical objects—are born of different fields and analyzed with separate techniques. Yet when the Mathematical Sciences Investigation team of crack forensic mathematicians, led by Professor Gauss, begins its autopsies of the victims of two seemingly unrelated homicides, Arnie Integer and Daisy Permutation, they discover the most extraordinary similarities between the structures of each body. Prime Suspects is a graphic novel that takes you on a voyage of forensic discovery, exploring some of the most fundamental ideas in mathematics. Travel with Detective von Neumann as he leaves no clue unturned, from shepherds' huts in the Pyrenees to secret societies in the cafés of Paris, from the hidden codes in the music of the stones to the grisly discoveries in Finite Fields. Tremble at the ferocity of the believers in deep and rigid abstraction. Feel the frustration—and the excitement—of our young heroine, Emmy Germain, as she blazes a trail for women in mathematical research and learns from Professor Gauss, the greatest forensic detective of them all. Beautifully drawn and exquisitely detailed, Prime Suspects is unique, astonishing, and witty—a once-in-a-lifetime opportunity to experience mathematics like never before. A short introduction ideal for students learning category theory for the first time. Challenge And Thrill Of Pre-College Mathematics Is An Unusual Enrichment Text For Mathematics Of Classes 9, 10, 11 And 12 For Use By Students And Teachers Who Are Not Content With The Average Level That Routine Text Dare Not Transcend In View Of Their Mass Clientele. It Covers Geometry, Algebra And Trigonometry Plus A Little Of Combinatorics. Number Theory And Probability. It Is Written Specifically For The Top Half Whose Ambition Is To Excel And Rise To The Peak Without Finding The Journey A Forced Uphill Task. The Undercurrent Of The Book Is To Motivate The Student To Enjoy The Pleasures Of A Mathematical Pursuit And Of Problem Solving. More Than 300 Worked Out Problems (Several Of Them From National And International Olympiads) Share With The Student The Strategy, The Excitement, Motivation, Modeling, Manipulation, Abstraction, Notation And Ingenuity That Together Make Mathematics. This Would Be The Starting Point For The Student, Of A Life-Long Friendship With A Sound Mathematical Way Of Thinking. There Are Two Reasons Why The Book Should Be In The Hands Of Every School Or College Student, (Whether He Belongs To A Mathematics Stream Or Not) One, If He Likes Mathematics And, Two, If He Does Not Like Mathematics- The Former, So That The Cramped Robot-Type Treatment In The Classroom Does Not Make Him Into The Latter; And The Latter So That By The Time He Is Halfway Through The Book, He Will Invite Himself Into The Former. In China, lots of excellent maths students take an active interest in various maths contests and the best six senior high school students will be selected to form the IMO National Team to compete in the International Mathematical Olympiad. In the past ten years China's IMO Team has achieved outstanding results -- they won the first place almost every year. The author is one of the coaches of China's IMO National Team, whose students have won many gold medals many times in IMO. This book is part of the Mathematical Olympiad Series which discusses several aspects related to maths contests, such as algebra, number theory, combinatorics, graph theory and geometry. The book elaborates on Geometric Inequality problems such as inequality for the inscribed quadrilateral, the area inequality for special polygons, linear geometric inequalities, etc. This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quad ratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and graduate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons. The importance of mathematics competitions has been widely recognised for three reasons: they help to develop imaginative capacity and thinking skills whose value far transcends mathematics; they constitute the most effective way of discovering and nurturing mathematical talent; and they provide a means to combat the prevalent false image of mathematics held by high school students, as either a fearsomely difficult or a dull and uncreative subject. This book provides a comprehensive training resource for competitions from local and provincial to national Olympiad level, containing hundreds of diagrams, and graced by many light-hearted cartoons. It features a large collection of what mathematicians call "beautiful" problems - non-routine, provocative, fascinating, and challenging problems, often with elegant solutions. It features careful, systematic exposition of a selection of the most important topics encountered in mathematics competitions, assuming little prior knowledge. Geometry, trigonometry, mathematical induction, inequalities, Diophantine equations, number theory, sequences and series, the binomial theorem, and combinatorics - are all developed in a gentle but lively manner, liberally illustrated with examples, and consistently motivated by attractive "appetiser" problems, whose solution appears after the relevant theory has been expounded. Each chapter is presented as a "toolchest" of instruments designed for cracking the problems collected at the end of the chapter. Other topics, such as algebra, co-ordinate geometry, functional equations and probability, are introduced and elucidated in the posing and solving of the large collection of miscellaneous problems in the final toolchest. An unusual feature of this book is the attention paid throughout to the history of mathematics - the origins of the ideas, the terminology and some of the problems, and the celebration of mathematics as a multicultural, cooperative human achievement. As a bonus the aspiring "mathlete" may encounter, in the most enjoyable This book contains a multitude of challenging problems and solutions that are not commonly found in classical textbooks. One goal of the book is to present these fascinating mathematical problems in a new and engaging way and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Where classical problems are concerned, such as those given in Olympiads or proposed by famous mathematicians like Ramanujan, the author has come up with new, surprising or unconventional ways of obtaining the desired results. The book begins with a lively foreword by renowned author Paul Nahin and is accessible to those with a good knowledge of calculus from undergraduate students to researchers, and will appeal to all mathematical puzzlers who love a good integral or series. Annotation. This text provides basic knowledge on how to solve combinatorial problems in mathematical competitions, and also introduces important solutions to combinatorial problems and some typical problems with often-used solutions. Copyright: ae75bca479de7065a7e2ef91ac2a7a25